Image Denoising based on Spatial/Wavelet Filter using Hybrid Thresholding Function

نویسندگان

  • Sabahaldin A. Hussain
  • Sami M. Gorashi
  • H. Guo
  • J. E. Odegard
  • M. Lang
  • R. A. Gopinath
  • I. W. Selesnick
  • S. G. Chang
  • B. Yu
چکیده

In this paper a hybrid denoising algorithm which combines spatial domain bilateral filter and hybrid thresholding function in the wavelet domain is proposed. The wavelet transform is used to decompose the noisy image into its different subbands namely LL, LH, HL, and HH. A two stage spatial bilateral filter is applied. The first stage is applied on the noisy image before wavelet decomposition. This stage will be called a pre-processing stage. The second stage spatial bilateral filtering is applied on the low frequency subband of the decomposed noisy image namely subband LL. This stage will tend to cancel or at least attenuate any residual low frequency noise components. The intermediate stage deal with high frequency noise components by thresholding detail subbands LH, HL, and HH using hybrid thresholding function. The experimental results show that the performance of the proposed denoising algorithm is superior to that of the conventional denoising approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Curvelet Framework for Denoising Images

Wiener filter suppresses noise efficiently. However, it makes the out image blurred. Curvelet preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy edges to the restored image, especially in homogeneous regions of images. In this paper, a new image denoising framework based on Curvelet transform and wiener filter is proposed, which can stop nois...

متن کامل

A Comparative Study of Wavelet Thresholding for Image Denoising

Image denoising using wavelet transform has been successful as wavelet transform generates a large number of small coefficients and a small number of large coefficients. Basic denoising algorithm that using the wavelet transform consists of three steps – first computing the wavelet transform of the noisy image, thresholding is performed on the detail coefficients in order to remove noise and fi...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Using Complex Wavelet Transform and Bilateral Filtering for Image Denoising

The bilateral filter is a useful nonlinear filter which without smoothing edges, it does spatial averaging. In the literature, the effectiveness of this method for image denoising is shown. In this paper, an extension of this method is proposed which is based on complex wavelet transform. In fact, the bilateral filtering is applied to the low-frequency (approximation) subbands of the decomposed...

متن کامل

A Study on Wavelet-based Image Denoising Using a Modified Adaptive Thresholding Method

The denoising of a natural image corrupted by additive white Gaussian noise (AWGN) is a classical problem in the signal processing community. The corruption of an image by noise is common during its acquisition or transmission. The aim of denoising is to remove the noise while keeping the signal featuresas much as possible. Traditional algorithms, such as the standard median (SM) filter and mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012